Quantification of Left Ventricular Function by Gated Perfusion Tomography: Testing of a New Fully Automatic Algorithm

A Chugh, EP Ficaro, M Moscucci, JN Kritzman, JR Corbett

University of Michigan Health System, Ann Arbor, MI

50th ACC Annual Scientific Session, Orlando, 2001
Disclosure

The University of Michigan will receive royalties from the sale of the cardiac quantification software, 4D-MSPECT.
Background

- LV ejection fraction (EF) is an important predictor of outcomes in patients with heart disease.

- LVEF is commonly measured using gated SPECT perfusion imaging.
Background

• With gated SPECT, certain common image characteristics have been problematic
 – Intense peri-cardiac activity distributions, e.g., hepatic and bowel
 – Extensive, severe perfusion defects
The objective of this study was to test a new algorithm (4D-MSPECT) for measuring EF against contrast ventriculography (CVG) and another gated SPECT quantification program (QGS).
Patients

- Consecutive patients referred for gated Sestamibi perfusion SPECT.
- Contrast ventriculogram performed within 90 days of gated SPECT study
- N = 105 (75 males)
- Average age: 59 ± 13 years
Patients

• 57 patients with history of myocardial infarction

• Patients with atrial fibrillation were not excluded (n = 3).

• Contrast ventriculograms with significant ectopy were excluded.
Methods (CVG)

• Blinded to previous estimation of EF (SPECT, ECHO, CVG).
• End-diastolic and end-systolic contours were manually constructed using single-plane RAO contrast ventriculography.
• EF values were obtained via Simpson’s rule algorithm using the GE Advantx DLX review station.

• Three sets of contours were constructed for each patient and then the EF values were averaged.

• For patients with atrial fibrillation, EFs were calculated using several RR intervals and then averaged.
Methods (4D-MSPECT)

- All data were acquired with a Picker (Marconi) 3000XP SPECT system.

- Acquisition parameters
 - 360° orbit, 60 steps/detector, 16 secs/step
 - 16 gating intervals
 - 64 x 64 matrix, 6.3 mm pixel size

- All gated data were reconstructed from 180° projection image orbits from RAO to LPO using filtered backprojection.
Methods (4D-MSPECT)

- Transverse images were filtered using a Butterworth filter (order 5.0, cut-off 0.25).
- Reconstructed images were resliced into LV short-axis images of the entire ventricular volume.
- All data were evaluated for EF, end-systolic and end-diastolic volumes with both 4D-MSPECT and QGS.
62 year old male s/p CABG with progressive angina
72 year old male with NQMI complicated by CHF
Results

• With 4D-MSPECT, smooth visually acceptable LV surface estimates were obtained without user intervention.

• 4D-MSPECT vs. CVG:

 \[y = 0.87x + 5.03 \ (r = 0.90, \ p < 0.001) \]

• QGS vs. CVG:

 \[y = 0.74x + 7.98 \ (r = 0.85, \ p < 0.001) \]
4D-MSPECT vs. CVG

\[y = 0.87x + 5.03 \quad r = 0.90 \]
QGS vs. CVG

$y = 0.74x + 7.98 \quad r = 0.85$
4D-MSPECT vs. QGS

\[y = 1.06x + 1.35 \quad r=0.96 \]
Conclusions

• The new automatic algorithm was robust in providing accurate measurements of LV function in patients with diverse image characteristics.

• 4D-MSPECT performed well in the setting of small hyperdynamic hearts and in hearts with multiple severe perfusion defects and impaired LV function.
Limitations

• CVG EFs were obtained with single-plane ventriculography (cf. biplane).

• Gated SPECT quantification may be associated with increased variance in EF calculation in patients with small hearts.